
WLRA Spring 2014

HIGH PERFORMANCE
SMART METER DATA ANALYSIS

WITH OPEN SOURCE SOFTWARE

Jason Mar
Electric Load Analysis

ROADMAP

PROBLEMS FACED BY LOAD RESEARCHERS
Slow Query Response Times

Funding and Procurement Complications
Difficulty Requesting Changes

Communication, Access, and Configuration Issues

SOLUTIONS
Slow Query Response Times

Data Caching and Compression

Funding and Procurement Complications
Open Source Software

Difficulty Requesting Changes from IT
Change Management Access

Communication, Access, and Configuration Issues
Organizational Change

COMPRESSION BENEFITS
Example:

One month of Hourly Interval Data
~1.5M customers

~48M rows
63 columns

Uncompressed CSV: 16 G
GZipped CSV: 3.5 G

GZipped Parquet Format: 2.5 G
(85% Reduction)

CACHING BENEFITS
Example:

Reading One Month of Hourly Interval Data
~1.5 M meters

~48 M rows
63 columns

Select avg(hour_01_kwh) from
Cache 1.41 seconds

Parquet 24.93 seconds
Data Warehouse: 20 minutes

USE CASES
Data Quality Analysis
Bill Impact Calculation

USE CASE 1:
INTERVAL DATA QUALITY

Workflow Steps
1. Load interval data for one month
2. Load billed consumption for month into table A
3. Group interval data by customer into table B
4. Select difference into table C
5. Select customers within difference threshold from table C
6. Determine cause for customers outside threshold

GROUP INTERVALS BY CUSTOMER
shark> CREATE TABLE dec_usage_cached
AS SELECT id
, sum(hour_01_kwh) as i1 , . . .
, sum(hour_24_kwh) as i24
FROM parquet_mrres
WHERE bill_yr_mo = 201312
AND fl_billable = 'Y'
GROUP BY id;

Time taken: 165.403 seconds

48,033,631 Input Rows
1,539,649 Output Rows

SELECT DIFFERENCE
shark> CREATE TABLE dec_qa_cached
AS SELECT A.id, A.prem_id, A.serv_pt_id, A.chnl_id,
FLOOR(A.total) as intrvl_consm
, B.billed_consm
, FLOOR(A.total) - B.billed_consm as diff
FROM dec_intrvl_consm_cached A
JOIN dec_consm_cached B
ON A.prem_id = B.prem_id
AND A.serv_pt_id = B.serv_pt_id;

Time taken: 6.684 seconds

1,539,567 Output Rows

SELECT CUSTOMERS WITHIN THRESHOLD
shark> CREATE TABLE dec_bipop_ids_cached
AS SELECT id
FROM dec_qa_cached
WHERE abs(diff) < 8;

Time taken: 3.693 seconds

1,539,567 Input Rows

1,351,333 Output Rows

USE CASE 2:
BILL IMPACT CALCULATION

Workflow Steps
1. Load interval data for population
2. Select determinants into table A
3. Select bill into table B
4. Analyze results

LOAD INTERVAL DATA FOR POPULATION
shark> CREATE TABLE dec_bipop_usage_cached
AS SELECT A.id,
B.i1, . . . , B.i24
FROM dec_bipop_ids_cached A
JOIN dec_usage_cached B
ON A.id = B.id;

Time taken: 34.55 seconds

1,351,333 Output Rows

SELECT DETERMINANTS
shark> CREATE TABLE dec_bipop_bill1_det_cached
AS SELECT id,
i1 + i2 + i3 + i4 + i5 + i6 + i7 + i8 as OFFPK,
i9 + i10 + i11 + i12 + i13 + i14 + i15 as SEMIOFFPK,
i16 + i17 + i18 + i19 as ONPK,
i20 + i21 + i22 + i23 + i24 as SUPEROFFPK
FROM dec_bipop_usage_cached;

Time taken: 7.063 seconds

1,351,333 Output Rows

SELECT BILL AMOUNT
shark> CREATE TABLE dec_bipop_bill1_bill_cached
AS SELECT offpk * 0.15 as offpk_amt,
semi offpk * 0.17 as semioffpk_amt,
onpk * 0.22 as onpk_amt,
superoffpk * 0.13 as supero ffpk _amt,

offpk * 0.15 + semi offpk * 0.17
+ onpk * 0.22 + supero ffpk * 0.13 as bill_amt
FROM dec_bipop_bill1_det_cached;

Time taken: 8.26 seconds

1,351,333 Output Rows

ANALYZE OUTPUT
shark> SELECT
ROUND(MIN(bill_amt), 2) as min_bill,
ROUND(MAX(bill_amt), 2) as max_bill,
ROUND(AVG(bill_amt), 2) as avg_bill,
ROUND(SUM(bill_amt), 2) as total
FROM dec_bipop_bill1_bill_cached;
min_bill max_bill avg_bill total

0.0 381976.0 148.26 200,354,652.68

Time taken: 0.748 seconds

1,351,333 Input Rows

NEXT STEPS

Investigate cause of non-matching data

(Bad Estimates? Missing Reads?)

Calculate Additional Rate Structures and Parameter Sets

(Use cached interval data to avoid I/O)

Compare New Rate Structures and Prices

Store Queries in Version Control System

SOFTWARE USED
Shark - SQL interface to Spark

Spark - RAM-based Computation Engine

Parquet Format - Columnar, Compressed Storage

Hadoop File System - Scalable Storage

Scala/Java - ETL and Runtime Environment
D3.js - Browser-based data visualization

Linux - Operating System

WHY IS IT FAST?

HOW IS THIS DIFFERENT?

SPARK

SHARK

PARQUET FORMAT

BEFORE: IO BOUND

AFTER

DEMO
SHARK WEB INTERFACE

METASTORE AND HDFS WEB INTERFACE

D3.JS BILL IMPACT VISUALIZATION

SHARK WEB INTERFACE

METASTORE BROWSER

HDFS BROWSER

BILL IMPACT VISUALISATION

Made with Crossfilter

http://square.github.io/crossfilter/

HISTORY
Open Source is the renewable energy of technology

Freedom + Security

View Timeline

http://cdn.knightlab.com/libs/timeline/latest/embed/index.html?source=0AoDku9R5cPzSdFEyS2hwZnQ4QWZKM0pUVmgyV1BGeGc&font=Bevan-PotanoSans&maptype=toner&lang=en&hash_bookmark=true&height=650#0

