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Supportlng EVs
l In the Valley
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EV Benefits

/ Beneficial load growth

ll for electric utilities and

--lll decreased costs for
consumers

Millions of tons of CO2
reduced in our region

More EVs in the Valley

economy (consumer fuel)

— ‘COZ‘
@ More $ stays in our local
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30+ EV Stakeholders...
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|dentified Market Barriers

A ROADMAP FOR
ELECTRIC VEHICLES
IN TENNESSEE

Drive Electric
©TENNESSEE

Charging Infrastructure
Availability (range anxiety)

Identified 4 market gaps

Innovative & Supportive
Policies

EV Availability & Offerings

Consumer Awareness
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Charging Infrastructure Availability

Gap: “Range anxiety” is consistently a top consumer barrier;
current fast charging infrastructure is poor
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Increase EV Penetration
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The Problem




DCFC Station Load Shapes

~8% of EV charging (most charging occurs at home) . Load Factor

Low load factor

- High loads for short durations, low total energy B - | |
Nearly random intervals for any single day . H H H H H H

However, over time charging tends to follows a
predictable distribution
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Business Model Concerns

Single Station Hourly Load

- High kW

Expensive highly
volatile monthly ‘ ‘ |
electricity costs ‘ ‘ ‘ l

d Y

* Low kWh

DCFC station
has little chance
to recover
adequate
revenue from EV

drivers
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Simulated Load Data

* Primary Source: SmartCharge Nashville
(FleetCarma)

- 120+ Electric Vehicles (54 LREV)

- 305,000+ Charging Events (2,659 DCFC)

- Source for probability of charging by hour and
distribution of charging energy

* Load Shape Simulation Model Inputs
- Number of plugs per station
- Number of replications (used 1,000)

- Annual Charges per year

Calculated based on number of EVs in the valley, number
of stations, average energy per charge, percent DCFC
charging

DNV-GL
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Benefits of Simulation

Captures unique load characteristics
Creates larger “sample”
* Includes appropriate variation

Produces more data than currently
available

Allows for estimation of future state
where no data currently exists

Gives a distribution of possible load
shapes

* Average appropriate for some use cases
« Median is typical non-diversified load
» Percentiles provide good sense of range

Allows consideration of many possible
outcomes, such as range of load factors,
by varying charges per plug

DNV-GL
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Model Validation Data

Customer Analytics AMI (Low Utilization)
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Simulation Results
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Possible Enhancements

+ Bypass simplifying assumptions
- Max charging duration of one hour okay for DCFC, not for Level 2 or Level 1
- Could modify to allow for multiple charges in an hour

« Considering other improvements

- Poisson Process for EV arrivals
Can vary rate to reflect population and charging behavior

- Use queuing theory to remove independence of plug use and potentially waiting times
Could test growth affect on waiting times

- Could use venhicle specific charging distributions and probabilities if data available

Would allow for variation in mix of vehicles

- Use moving 3-hour average for charging per hour to smooth probabilities of charging by hour
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Conclusion




Key Takeaways

DCFC Simulation benefits

«  Nearly 90% of EV charging occurs at Increased sample size

home
- full distribution of station shapes

- But DCFC is EV adoption barrier
- aggregate system loads

« DCFC Load Shape

Future proof — Flexible key inputs

- Low Load Factor
- Increased EV adoption

- Random Events
! - Change in % of charging at DCFC

- Unique load shape creates

punitive demand charges - Increased number of DCFC stations

« AMI data validates model - Change in plugs per station

- Increased EV charging speeds
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Discussion
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