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Summary

* The increased rate of EV adoption poses various challenges for
PPL Electric Utility. The need for proactive reinforcement of our
Distribution network and outreach to potential EV customers is
critical.

* Fully deployed smart meters for PPL's 1.7 million customers since
2018, all of which read at 15-minute intervals.

 PPL’s Data Analytics team engaged E Source to develop multiple
machine learning models to identify residential Level 2 (L2)
charging adoption.
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Methodology

E © 2020 E Source | www.esource.com




Methodology

* Challenges:
® Zero samples of ground-truth, initially

®* Multiple approaches to examine potential Level 2 customers — internal survey, scraping forums, work
order data...

®* Large volume of AMI meter-day records (10billion+)

* Solution:
® Intelligently sampled PPL’s service territory and highly-suspected Level 2 customers

® We acquired 6 ground truth customers and expanded sample size via deep learning annotation to
over 2,000 meter-day records

®* Training set formed from this representative sampling

* Execution:
® Use static data from ESDS and PPL to target over entire 1.2 million residential customers
®* Train high performing classifier on meter-day records of ground truth customers
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Methodology

* Multi-model approach

Target Model AMI Classifier Model

A aton™
Wilmington

Time of day > Time of day >

E © 2020 E Source | www.esource.com 7



Methodology — Two model approach

 Target model « AMI classifier model
« Utilized known ground « Classifies L2 presence / meter-
truth meter-day labels day using:
to create a target via - Statistical hand engineered
annotation and 1d- features
CNN - Encoded features trained from
« A boosted tree model deep learning model

scored the entire
service territory using
only non-AMI features
(ESDS and PPL)
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Results

PPL now has a general and specific view of likely L2 customers

Locations of most likely L2 based on classifier

Heatmap of target model
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Results - AMI classifier

L2 probability = 0.998, L2 frequency of use = 0.77
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Epilogue
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Epilogue

* A multi-model approach allows for flexibility to gain analytical
iInsights while reducing computational resources by avoiding
having to continually process large amounts of AMI data.

* Analytical insights derived from this modeling approach allows for
exploration of additional analytical use cases, be it network
reinforcement optimization, customer outreach strategy, or
strategic placement of communal charging.
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Workftlow

Typical workflow from client was queries from their data source, and iterative
cloud based data science from ESDS
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