
© year NRG Energy, Inc. All rights reserved. / Proprietary and Confidential Information 1

Emergent Design
Patterns
From the Data Science of Load Forecasting

© year NRG Energy, Inc. All rights reserved. / Proprietary and Confidential Information 2

• “Christopher Alexander says, “Each pattern describes a problem which
occurs over and over again in our environment, and then describes the
core of the solution to that problem, in such a way that you can use
this solution a million times over, without ever doing it the same way
twice.” Even though Alexander was talking about patterns in buildings
and towns, what he says is true about object-oriented design
patterns.”

“Point of view affects one’s interpretation of what is and isn’t a pattern.
One person’s pattern can be another person’s primitive building block.”

from Design Patterns: Elements of Reusable Object-Oriented Software

What is a design pattern?

© year NRG Energy, Inc. All rights reserved. / Proprietary and Confidential Information 3

• SPEED! Always prefer faster over slower

• Prefer readability and heavy documentation

• Think (understand, search, learn) before coding

• Separation of concerns
• Section the program into separate parts so that each part addresses a different concern

• DRY (do not repeat yourself)
• Use abstraction to create reusable code

• Encapsulate what changes
• Bundle data and methods into units with a single interface

• Program for interface not implementation

• Open Closed Principle
• Classes, modules, functions should be open for extension but closed for modification.

• Single responsibility principle
• Classes, libraries, modules should have a single purpose. They should have responsibility over a single part of the

overall system

What is a design principle?

© year NRG Energy, Inc. All rights reserved. / Proprietary and Confidential Information 4

Design patterns/principles in Python
(The Zen of Python)

>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

© year NRG Energy, Inc. All rights reserved. / Proprietary and Confidential Information 5

• Data storage can be a mix of formats, environments, and systems.
• RDMS Relational Database Management System (e.g. Oracle, SQL Server)
• DDBMS Distributed Database Management System (e.g. Hadoop, cloud based)
• Binary file storage on network servers (possibly many)

• Many groups utilize several languages/environments for aggregation, analysis,
automation, presentation

• SQL, PLSQL, Python, VBA/Excel, BASH Shell

• Many deliverables are time sensitive and require an orchestrated set of successes to
pull off.

• Multiple programmers simultaneously repairing, enhancing, and repurposing the code
base requires organization, consistency, and version control management

Why should a load forecasting data scientist care?

© year NRG Energy, Inc. All rights reserved. / Proprietary and Confidential Information 6

• “Code is read more often than it’s written. Heroes don’t write overly terse code. They
are explicit with the variable names and document everything.”

“Well-indented code is more readable. Thus, in Python it’s mandatory.”
… from Contemplating the Zen of Python, Chaitanya Baweja

• When documenting your code, think about making it easy for someone to search
through it and figure out what each section is supposed to be doing.

• Descriptive variable names are easier to find and trace.

• If there is a line or block that is doing something not obvious, use a comment to
describe what it is doing. Your future self will thank you.

Prefer readability and heavy documentation

© year NRG Energy, Inc. All rights reserved. / Proprietary and Confidential Information 7

• We use try/except blocks and raise statements to handle
errors we are aware of

• We use a custom email-based error logger to alert us when
an unhandled error occurs

• When sections of code complete, we print “landmarks” to the
screen and store this output to a log, in case of error
debugging.

Errors should never pass silently. Unless explicitly
silenced

© year NRG Energy, Inc. All rights reserved. / Proprietary and Confidential Information 8

Separation of “concerns”

• Don’t write your program as one solid
block, instead, break up the code into
chunks. The chunks should be cohesive,
i.e., the items in the chunks should be
somehow similar and makes sense
together.

• Your chunks should decrease coupling,
i.e., they should have as little
dependence on the other chunks as
possible.

• We prefer to import packages, set
constants, enable error logging, and
define any utility functions at the
beginning of all our code. This
consistency in our writing style improves
our efficiency maintaining the code base.

© year NRG Energy, Inc. All rights reserved. / Proprietary and Confidential Information 9

• If you find yourself repeating the same
code in your module, then you should
use a loop. It will make your code
shorter and more readable.

• We prefer list comprehensions over for
loops.

• Recursive functions can make your code
epic.

Do not repeat yourself (loop it)

© year NRG Energy, Inc. All rights reserved. / Proprietary and Confidential Information 10

• We think faster is always better
than slower and more
processors are always better
than fewer. Does that make us
impatient and greedy? Nope. It
makes us efficient!

• If you can encapsulate your
loop code into a function then
you can multiprocess it.

• We always check the available
resources on a server before
running a multi threaded
process to prevent issues with
fellow users and IT.

Do not repeat yourself (multiprocess it)

© year NRG Energy, Inc. All rights reserved. / Proprietary and Confidential Information 11

• If you find yourself copying the same code bock into different programs, then you should
consider putting it into a package.

• If you need to change something in this code block, you only need to change it in the package
rather than hunt for every instance of it in your code. A change in the package is automatically
pushed to every program that imports it.

• An example of one of our packages is our SQL package. We have various connection, query,
insert, and update functions in our package. We simply import the package, and we can
execute blocks of code with one line. If database connection strings change, we only need to
update the package, and not the hundreds of programs that use it.

• We also have a package for other things we find ourselves doing repeatedly from different
environments: emailing, graphing, and pulling weather data.

Do not repeat yourself (package it)

© year NRG Energy, Inc. All rights reserved. / Proprietary and Confidential Information 12

• We found ourselves using the same model type in different programs under slightly
different circumstances. For example we used an artificial neural network to forecast
ISO level load and also customer profile load. We were also creating these forecasts
on different time frames and using different predictor variables. As our understanding
of the model increased, we began to make enhancements which was a pain because
we had implementations scattered everywhere.

• Encapsulating the model in a class object was a game changer. Our class
contained all the functionality needed to get, clean, and organize the data. It
contained the input, output, and network data. It contained all the model
specifications and the actual optimization code.

• Using the class, our code became much cleaner. Creating a neural network forecast,
which had been several hundred lines of code, was now a one liner that simply told
the class what type of implementation it was. Only the class interface needed to
be handled by our code. Enhancements only needed to be coded once and
were guaranteed to be consistently applied to every implementation.

Encapsulation and interface programming

© year NRG Energy, Inc. All rights reserved. / Proprietary and Confidential Information 13

• Wrappers allow us to modify or extend the utility of a function, without modifying the function
itself. Think of it as function composition.

• We automate a lot of python code using the crontab scheduler on a Linux server. We also use
GitLab as our version control repository management system. Bash shell scripts allow us to
control the git branch, choose the python virtual environment, and group together affiliated
programs.

Wrappers, and shell scripts

© year NRG Energy, Inc. All rights reserved. / Proprietary and Confidential Information 14

• We use GUIs to lock down human
processes. We can encapsulate
repetitive code into buttons and
control available options to users.

• GUIs can speed up processes and
reduce the chance of human error
by making them less cluttered.

• GUIs can ensure that outside groups
are consistent with work or data
requests parameters.

• GUIs can be run on a user’s laptop
or on the server.

GUIs

© year NRG Energy, Inc. All rights reserved. / Proprietary and Confidential Information 15

Thank you.

Music: The Zen of Python
lyrics by Tim Peters 1999
music and arrangement by Barry Warsaw 2020
Performance or remix of the music and arrangement may be done according to the terms of the CC BY-NC-SA 4.0

