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EV Benefits
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More EVs in the Valley  

=

Beneficial load growth 
for electric utilities and 

decreased costs for 
consumers

Millions of tons of CO2 
reduced in our region

More $ stays in our local 
economy (consumer fuel)
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The EV Roadmap Identified Market Barriers
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30+ EV Stakeholders… Identified 4 market gaps 

Charging Infrastructure 
Availability (range anxiety)

Innovative & Supportive 
Policies

EV Availability & Offerings

Consumer Awareness
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Charging Infrastructure Availability

• DC fast charging located 
along major travel corridors 
would  give consumers 
confidence 

• Business model is tough with 
current policies 

- Low utilization, high cost, 
complex pricing
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Gap: “Range anxiety” is consistently a top consumer barrier; 
current fast charging infrastructure is poor

Existing “Fast” Charging Sites
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Increase EV Penetration
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Public charging infrastructure is critical to increase EV’s in the Valley

~ 8% charging DC Fast Chargers ~ 88% of all EV charging at home



The Problem
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DCFC Station Load Shapes
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• ~8% of EV charging (most charging occurs at home)

• Low load factor

- High loads for short durations, low total energy

• Nearly random intervals for any single day

• However, over time charging tends to follows a 
predictable distribution



• High kW

• Expensive highly 
volatile monthly 
electricity costs 

• Low kWh

• DCFC station 
has little chance 
to recover 
adequate 
revenue from EV 
drivers 

Business Model Concerns



Load
Shapes
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Simulated Load Data
• Primary Source: SmartCharge Nashville 

(FleetCarma)

- 120+ Electric Vehicles (54 LREV)

- 305,000+ Charging Events (2,659 DCFC)
- Source for probability of charging by hour and 

distribution of charging energy

• Load Shape Simulation Model Inputs

- Number of plugs per station

- Number of replications (used 1,000)

- Annual Charges per year

- Calculated based on number of EVs in the valley, number 
of stations, average energy per charge, percent DCFC 
charging
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Benefits of Simulation
• Captures unique load characteristics

• Creates larger “sample”

• Includes appropriate variation

• Produces more data than currently 
available

• Allows for estimation of future state 
where no data currently exists

• Gives a distribution of possible load 
shapes

• Average appropriate for some use cases

• Median is typical non-diversified load

• Percentiles provide good sense of range

• Allows consideration of many possible 
outcomes, such as range of load factors, 
by varying charges per plug
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Model Validation Data
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Simulation Results
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Typical week for median 
peak demand simulation for 
default case – 5% LF

Typical week 
for high and 
low load factor 
simulations

Annual average load 
by day of week
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Possible Enhancements
• Bypass simplifying assumptions

- Max charging duration of one hour okay for DCFC, not for Level 2 or Level 1

- Could modify to allow for multiple charges in an hour

• Considering other improvements

- Poisson Process for EV arrivals

- Can vary rate to reflect population and charging behavior

- Use queuing theory to remove independence of plug use and potentially waiting times

- Could test growth affect on waiting times

- Could use vehicle specific charging distributions and probabilities if data available

- Would allow for variation in mix of vehicles

- Use moving 3-hour average for charging per hour to smooth probabilities of charging by hour
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Conclusion
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Key Takeaways

• Nearly 90% of EV charging occurs at 
home

- But DCFC is EV adoption barrier

• DCFC Load Shape

- Low Load Factor

- Random Events

- Unique load shape creates 
punitive demand charges

• AMI data validates model
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DCFC Simulation benefits

• Increased sample size

- full distribution of station shapes 

- aggregate system loads

• Future proof – Flexible key inputs

- Increased EV adoption

- Change in % of charging at DCFC

- Increased number of DCFC stations 

- Change in plugs per station

- Increased EV charging speeds
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Discussion
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